The interaction between two ruthenium(II) arene complexes of curcumin analogs and human serum albumin (HSA) was systematically investigated by multispectroscopic techniques. The fluorescence spectral results indicated that two complexes quenched the intrinsic fluorescence of HSA through static quenching mode. The quenching constants and the corresponding thermodynamic parameters at different temperatures were calculated. The binding interactions of two complexes with HSA resulted in the complex formation of complex-HSA, and the van der Waals interactions and hydrogen bond interactions played major roles in the complex stabilization. The distances between HSA and two complexes were obtained according to fluorescence resonance energy transfer theory. The site competitive replacement experiments illustrated that two complexes mainly bounded with HSA on site I. The results of synchronous fluorescence spectra, three-dimensional fluorescence spectra, FT-IR spectra, and circular dichroism spectra indicated that the secondary structure of HSA was changed at the present of two complexes. The results of mass spectrometry further validated the binding interaction and the binding number between two complexes and HSA.