The steady state fluorescence anisotropy ( r s ) of 1-acryl-2- cis parinaroyl phosphatidylcholine (PnPC) was compared with that of diphenylhexatriene (DPH) in a variety of model- and biological membrane systems. The fluorescence anisotropy of both probes responded similarly to temperature changes and variations in the acyl chain composition in phosphatidylcholine (PC) liposomes. The presence of proteins and cholesterol increased r s for both DPH and PnPC in the biological membranes as compared to the isolated polar membrane lipids. Comparison of DPH and PnPC in dipalmitoyl-PC-liposomes with and without 50 mol% cholesterol, showed at temperatures above the phase transition of pure dipalmitoyl-PC the presence of cholesterol increased the r s -value for DPH strongly, whereas the r s -value for PnPC was much less affected. In the cholesterol-rich erythrocyte membrane as well as in microsomes from Morris hepatoma 7787, which have an increased cholesterol content as compared to normal rat liver microsomes, the r s of DPH was higher than that of PnPC. No large differences between the r s -values of both probes were evident in the normal cholesterol-poor rat liver microsomes. These effects are discussed in terms of structural differences between the probes and variation of cholesterol content. Alterations in the fatty acid composition of PC present in human erythrocyte membranes were introduced with the aid of a PC-specific transfer protein. Fluorescence anisotropy values of both probes hardly changed upon enrichment of the red cell membrane with either dipalmitoyl PC or 1-palmitoyl-2-arachidonyl PC.