Therapeutic inhibition of the viral protein Nef is an intriguing direction of antiretroviral drug discovery—it may revitalize immune mechanisms to target, and potentially clear, HIV-1-infected cells. Of the many cellular functions of Nef, the most conserved is the downregulation of surface CD4, which takes place through Nef hijacking the clathrin adaptor protein complex 2 (AP2)-dependent endocytosis. Our recent crystal structure has unraveled the molecular details of the CD4-Nef-AP2 interaction. Guided by the new structural knowledge, we have developed a fluorescence polarization-based assay for inhibitor screening against Nef’s activity on CD4. In our assay, AP2 is included along with Nef to facilitate the proper formation of the CD4-binding pocket, and a fluorescently labeled CD4 cytoplasmic tail binds competently to the Nef-AP2 complex generating the desired polarization signal. The optimized assay has a good signal-to-noise ratio, excellent tolerance of DMSO and detergent, and the ability to detect competitive binding at the targeted Nef pocket, making it suitable for high-throughput screening.