BackgroundCervical vestibular evoked myogenic potential (cVEMP) testing is a strong tool that enables objective determination of balance functions in humans. However, it remains unknown whether cVEMP correctly expresses vestibular disorder in mice.ObjectiveIn this study, correlations of cVEMP with scores for balance-related behavior tests including rotarod, beam, and air-righting reflex tests were determined in ICR mice with vestibular disorder induced by 3,3′-iminodipropiontrile (IDPN) as a mouse model of vestibular disorder.MethodsMale ICR mice at 4 weeks of age were orally administered IDPN in saline (28 mmol/kg body weight) once. Rotarod, beam crossing, and air-righting reflex tests were performed before and 3–4 days after oral exposure one time to IDPN to determine balance functions. The saccule and utricles were labeled with fluorescein phalloidin. cVEMP measurements were performed for mice in the control and IDPN groups. Finally, the correlations between the scores of behavior tests and the amplitude or latency of cVEMP were determined with Spearman’s rank correlation coefficient. Two-tailed Student’s t test and Welch’s t test were used to determine a significant difference between the two groups. A difference with p < 0.05 was considered to indicate statistical significance.ResultsAfter oral administration of IDPN at 28 mmol/kg, scores of the rotarod, beam, and air-righting reflex tests in the IDPN group were significantly lower than those in the control group. The numbers of hair cells in the saccule, utricle, and cupula were decreased in the IDPN group. cVEMP in the IDPN group was significantly decreased in amplitude and increased in latency compared to those in the control group. cVEMP amplitude had significant correlations with the numbers of hair cells as well as scores for all of the behavior tests in mice.ConclusionsThis study demonstrated impaired cVEMP and correlations of cVEMP with imbalance determined by behavior tests in a mouse model of vestibular disorder.
Read full abstract