Abstract

In this study, we test the hypothesis that exposure to environmentally significant concentrations of aluminum (Al, 80 μM) causes the microfilament array of Vaucheria longicaulis var. macounii vegetative filaments to become fragmented and disorganized. Changes in F-actin organization following treatment of vegetative filaments by Al are examined using vital staining with fluorescein phalloidin. In the cortical cytoplasm of the apical zone of pH 7.5 and pH 4.5 control cells, axially aligned bundles of F-actin lead to a region of diffuse, brightly stained material. Dimly stained focal masses are noted deeper in the cytoplasm of the apical zone whereas they are absent from the zone of vacuolation. The F-actin array is visualized in the cortical cytoplasm of the region of the cell, distal to the apical tip, which exhibits vigorous cytoplasmic streaming (zone of vacuolation) as long, axially aligned bundles with which chloroplasts and mitochondria associate. Thirty minutes following treatment with aluminum, and for the next 8–16 h, the F-actin array is progressively disorganized. The longitudinally aligned F-actin array becomes fragmented. Aggregates of F-actin, such as short rods, amorphous and stellate F-actin focal masses, curved F-actin bundles and F-actin rings replace the control array. Each of these structures may occur in association with chloroplasts or independently with no apparent association with organelles. Images are recorded which indicate that F-actin rings not associated with organelles may self-assemble by successive bundling of F-actin fragments. The fragmentation and bundling of F-actin in cells of V. longicaulis upon treatment with aluminum resembles those reported after diverse forms of cell disturbance and supports the hypothesis that aluminum-induced changes in the F-actin array may be a calcium-mediated response to stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call