The main objective of this paper is to present a methodology for the three-dimensional aeroelasticity analysis of turbomachinery blades using an unstructured compressible Navier-Stokes solver for the fluid and a modal model for the structure. The basic fluid solver is constructed in the form of a central difference scheme with explicitly added artificial dissipation which is based upon the fourth- and second-order differences of the solution. The temporal discretization uses an implicit time integration scheme based on a Jacobi relaxation procedure. The structural modes of vibration are determined via a finite element model and the mode shapes are interpolated on to the fluid mesh in a manner that is consistent with general unstructured tetrahedral grids. A spring analogy algorithm that can move the mesh according to the instantaneous shape of a deforming blade has been developed for the accurate tracking of the solid boundaries without creating excessive grid distortions. The performance of the resulting system was examined by considering the aeroelastic behaviour of NASA Rotor 67 fan blade and predictions were compared to experimental results wherever possible. Using a three-dimensional cyclic symmetry model, the tip leading edge time histories were predicted under peak-efficiency and near-stall conditions, and the corresponding aeroelastic natural frequencies and aerodynamic damping values were determined. The blade was found to be stable in all cases considered.