Numerous studies have highlighted the role of translationally controlled tumor protein (TCTP) as a key inflammatory mediator of asthma and allergies. Our previous study revealed that blocking the cytokine-like activity of TCTP using JEW-M449, an anti-TCTP monoclonal antibody (mAb), alleviated allergic inflammation in asthmatic mice. This study aimed to determine whether directly delivering JEW-M449 into the respiratory tract is a more effective way of mitigating airway inflammation in a mouse model of ovalbumin (OVA)-induced allergic airway inflammation than delivering this antibody via the intraperitoneal (IP) route. OVA-sensitized mice were intranasally administered JEW-M449 to enable its direct delivery to the respiratory tract before OVA challenge. We evaluated the changes in the levels of bronchoalveolar lavage fluid (BALF) cells, T helper type 2 (Th2) cytokines, OVA-specific immunoglobulin E (IgE), and histopathological alterations in the lung tissues. Intranasal (IN) administration of JEW-M449 significantly ameliorated the pathological changes associated with OVA-induced lung injury, including reduced inflammatory cell infiltration and mucus hypersecretion. Mice IN administered JEW-M449 also showed decreased OVA-mediated induction of Th2 cytokines in BALF and lung homogenates. Importantly, JEW-M449 delivered via the IN route reached the lung tissue more effectively and exerted superior anti-inflammatory effects in OVA-challenged mice than the IP-delivered JEW-M449. This study is the first to demonstrate the efficacy of directly delivering JEW-M449 anti-TCTP mAb into the respiratory tract to alleviate the asthma phenotype in a mouse model, thereby highlighting a potential delivery strategy for novel inhaled mAb therapeutics for human asthma.
Read full abstract