Newly available flattening filter free (FFF) beam increases the dose rate by 3∼6 times at the central axis. In reality, even flattening filtered beam is not perfectly flat. In addition, the beam profiles across different fields may not have the same amplitude. The existing inverse planning formalism based on the total-variation of intensity (or fluence) map cannot consider these properties of beam profiles. The purpose of this work is to develop a novel dose optimization scheme with incorporation of the inherent beam profiles to maximally utilize the efficacy of arbitrary beam profiles while preserving the convexity of the optimization problem. To increase the accuracy of the problem formalism, we decompose the fluence map as an elementwise multiplication of the inherent beam profile and a normalized transmission map (NTM). Instead of attempting to optimize the fluence maps directly, we optimize the NTMs and beam profiles separately. A least-squares problem constrained by total-variation of NTMs is developed to derive the optimal fluence maps that balances the dose conformality and FFF beam delivery efficiency. With the resultant NTMs, we find beam profiles to renormalized NTMs. The proposed method iteratively optimizes and renormalizes NTMs in a closed loop manner. The advantage of the proposed method is demonstrated by using a head-neck case with flat beam profiles and a prostate case with non-flat beam profiles. The obtained NTMs achieve more conformal dose distribution while preserving piecewise constancy compared to the existing solution. The proposed formalism has two major advantages over the conventional inverse planning schemes: (1) it provides a unified framework for inverse planning with beams of arbitrary fluence profiles, including treatment with beams of mixed fluence profiles; (2) the use of total-variation constraints on NTMs allows us to optimally balance the dose confromality and deliverability for a given beam configuration. This project was supported in part by grants from the National Science Foundation (0854492), National Cancer Institute (1R01 CA104205), and Leading Foreign Research Institute Recruitment Program by the Korean Ministry of Education, Science and Technology (K20901000001-09E0100-00110). To the authors' best knowledgement, there is no conflict interest.
Read full abstract