Purpose: The aim of the research was to describe the properties and methods of using limestone for desulfurization of flue gases and to analyse the process of fluidized bed comminution and the influence of selected parameters and stand modification on quality of product of fluidized bed comminution. Design/methodology/approach: Tests of the grinding process on the fluidized bed were carried out using a modified fluid bed mill for operational variable parameters and their results were compared with the results received before modification. The modification of the test stand consisted of increasing the height of the grinding chamber, which ensured an increase in the volume of the fluidized layer where the grinding process takes place. Findings: Main parameters that determined the effects of comminution in the analyzed case were: overpressure of working air and the rotor speed of the classifier. The introduction of the modifications of the test stand ensured an increase in the volume of the fluidized layer in which the grinding process takes place. As well as a greater gravitational classification, which caused larger grains to be stopped in the grinding chamber and shift of characteristics of grain compositions towards finer grains. Research limitations/implications: It is assumed that the diameter of sorbent grains used in the fluidized bed can not exceed 6 mm. The granularity of the offered sorbents ranges from 0.1 mm to 1.2 mm. The quality of the desulfurization process depends on the overall granulation of used sorbent grains. Practical implications: Appropriately selected sorbent grains used in wet and dry flue gas desulphurisation plants ensure improved efficiency of the desulphurisation process and lower operating costs of the installation. Originality/value: Thanks to the comminution method used, a sorbent is obtained without impurities and with an increased specific surface, which can be used in fluidized bed boilers.
Read full abstract