This paper presents numerical predictions of flow around irregular-plan buildings (S-, R-, L- and U-shaped models) in high Reynolds number. The adopted computational approach and numerical models are described firstly. Then comparative analysis with the numerical and experimental data has been conducted to verify the reliability of the numerical predictions. Finally, characteristics of mean and fluctuating pressure distributions and vertical and lateral velocity profiles of the flow around the four models have been investigated and assessed thoroughly. The study shows that satisfactory results can be obtained by large eddy simulation (LES), especially when fluctuating wind velocity is considered in the inflow boundary. Distribution of mean pressure coefficients on front faces is relatively regular. Large fluctuating pressure coefficients are induced by strong vortex motion. Velocity profiles of wind flow are disturbed obviously among the four building models, especially in weak flow. The disturbed intensity decreases with increasing of the distance away from bluff body. The suggested MDS (Maximum Disturbance Scopes) away from bluff body are generally 0.25H in inflow zones, 0.4H in roof zones, 0.5H in both side zones and 3H in weak zones.
Read full abstract