Understanding the heterogeneity of molecular environments within cells is an outstanding challenge of great fundamental and technological interest. Cells are organized into specialized compartments, each with distinct functions. These compartments exhibit dynamic heterogeneity under high-resolution microscopy, which reflects fluctuations in molecular populations, concentrations, and spatial distributions. To enhance our comprehension of the spatial relationships among molecules within cells, it is crucial to analyze images of high-resolution microscopy by clustering individual pixels according to their visible spatial properties and their temporal evolution. Here, we evaluate the effectiveness of similarity metrics based on their ability to facilitate fast and accurate data analysis in time and space. We discuss the capability of these metrics to differentiate subcellular localization, kinetics, and structures of protein-RNA interactions in Forster resonance energy transfer (FRET) microscopy videos, illustrated by a practical example from recent literature. Our results suggest that using the correlation similarity metric to cluster pixels of high-resolution microscopy data should improve the analysis of high-dimensional microscopy data in a wide range of applications.
Read full abstract