Progress in understanding the cell biology of urea transporter proteins has been hampered by the lack of an appropriate cell culture system. The goal of this study was to create a polarized epithelial cell line that stably expresses the largest of the rat renal urea transporter UT-A isoforms, UT-A1. The gene for UT-A1 was cloned into pcDNA5/FRT and transfected into Madin-Darby canine kidney (MDCK) cells with an integrated Flp recombination target site. The cells from a single clone were grown to confluence on collagen-coated membranes until the resistance was >1,500 Omega.cm(2). Transepithelial [(14)C]urea fluxes were measured at 37 degrees C in a HCO(3)(-)/CO(2) buffer, pH 7.4, with 5 mM urea. The baseline fluxes were not different between unstimulated UT-A1-transfected MDCK cells and nontransfected or sham-transfected MDCK cells. However, only in the UT-A1-transfected cells was UT-A1 protein expressed (as measured by Western blot analysis) and urea transport stimulated by forskolin or arginine vasopressin. Forskolin and arginine vasopressin also increased the phosphorylation of UT-A1. Thionicotinamide, dimethylurea, and phloretin inhibited the forskolin-stimulated [(14)C]urea fluxes in the UT-A1-transfected MDCK cells. These characteristics mimic those seen in rat terminal inner medullary collecting ducts. This new polarized epithelial cell line stably expresses UT-A1 and reproduces several of the physiological responses observed in rat terminal inner medullary collecting ducts.