Increasing crop diversity is a way for agriculture to transition towards a more sustainable and biodiversity-friendly system. Growing buckwheat intercropped with paulownia can contribute not only to mitigating climate change but can also enrich the environment with species of agricultural importance, without causing a decline in pollinators, since buckwheat is pollinated mainly by the honeybee. In a field experiment comparing growing buckwheat with paulownia against a monoculture crop, we investigated differences in flower visitation and beekeeping value, as well as the associated impact on crop yields. We analysed the effect of intercropping on the beekeeping value of buckwheat in terms of bee population size and the sugar mass in buckwheat flowers, nectar mass in buckwheat flowers, the quality of the delivered raw sugar and biometric characteristics. We found significant differences in the number of branches on the main shoot and the total number of branches. Significantly higher parameters were obtained in sites with buckwheat monoculture. The cultivation method variant did not cause differentiation in either the structure elements or the yield itself. Yields ranged from 0.39 (2021) to 1.59 (2023) t·ha−1. The average yield in intercropping was slightly lower (0.02 t·ha−1) than in the monoculture system of buckwheat (0.93 t·ha−1). More flowers per plant per day of observation and more flowers in millions of flowers per hectare per day of observation were observed in the intercropping of buckwheat with paulownia. Based on our experiment, we concluded that growing buckwheat in monoculture significantly increased the number of flowers, resulting in an increase in pollinator density and an increased number of pollinators per unit area.