Increasingly, companies use multi-source data to operate new information systems, such as social networking, e-commerce, and location-based services. These systems leverage complex, multi-stakeholder data supply chains in which each stakeholder (e.g., users, developers, companies, and government) must manage privacy and security requirements that cover their practices. US regulator and European regulator expect companies to ensure consistency between their privacy policies and their data practices, including restrictions on what data may be collected, how it may be used, to whom it may be transferred, and for what purposes. To help developers check consistency, we identified a strict subset of commonly found privacy requirements and we developed a methodology to map these requirements from natural language text to a formal language in description logic, called Eddy. Using this language, developers can detect conflicting privacy requirements within a policy and enable the tracing of data flows within these policies. We derived our methodology from an exploratory case study of the Facebook platform policy and an extended case study using privacy policies from Zynga and AOL Advertising. In this paper, we report results from multiple analysts in a literal replication study, which includes a refined methodology and set of heuristics that we used to extract privacy requirements from policy texts. In addition to providing the method, we report results from performing automated conflict detection within the Facebook, Zynga, and AOL privacy specifications, and results from a computer simulation that demonstrates the scalability of our formal language toolset to specifications of reasonable size.