When the hot oil pipeline is running at a low throughput, it easily enters into an unstable condition, which seriously threatens the safety of the hot oil pipeline operation. In this study, the unsteady heat transfer and flow mathematical models for the hot oil pipeline system were established first by comprehensively considering the uncertainty of parameters during pipeline operation, such as the operating parameters (throughput and oil temperature), physical properties of crude oil (freezing point, viscosity, and thixotropic parameters), and environmental parameters (buried deep soil temperature and soil thermal conductivity). Then, the efficient Latin hypercube sampling (LHS) stochastic numerical algorithm was applied and further developed to quantitatively describe the operation safety of hot oil pipelines with low throughput in the form of probability. On the basis of the abovementioned research, the qualitative relationship between pipeline flowrate and friction loss is obtained. Finally, taking an actual crude oil pipeline as an example, the failure probabilities of the pipeline under different operating conditions were analyzed in detail. Combined with the target safety level of pipeline operation, the minimum allowable throughput of pipelines was determined. This study revealed the flow and heat transfer law of hot oil pipelines with low throughput and determined its operation safety and reliability under different operating conditions.
Read full abstract