The flow past a cactus-shaped cylinder with four ribs is investigated numerically using large eddy simulations (LES) at Reynolds number of 20,000 and experimentally using particle image velocimetry (PIV) at Reynolds number of 50,000. In both approaches, the full range of angle of attack is covered. LES results show a good qualitative and quantitative match of the aerodynamic properties to previous experimental data, although the value of the critical angle of attack is slightly lower. The results confirm that there is no Reynolds number dependency within the investigated range allowing a comparison of the flow fields from the present LES and PIV. Significant variations of the flow patterns with the angle of attack are found and quantified using the recirculation length and wake width. Overall, the observed angle of attack dependence resembles the behaviour of the square cylinder. However, the studied cylinder has a narrower wake at all angular orientations. Proper orthogonal decomposition is used to identify large coherent structures in the flow. At all angles of attack the first two modes remain dominant making it possible to reconstruct the periodic vortex shedding process using a low-order model.