AbstractThis article explores the utilization of a synthetic jet as an approach to cool microelectronic devices, addressing their thermal management needs. The study includes both experimental measurements and numerical simulations to gain a comprehensive understanding of the heat transfer characteristics and fluid flow patterns generated by the synthetic jet actuator. The average Nusselt number (Nu) of the synthetic jet impinging flow with the dimensionless separation distances of the orifice to the heated surface (H/D) is investigated at different Reynolds numbers. A dynamic mesh scheme is employed in performing the simulations of the fluid domain to showcase the diaphragm's vibration and its deformation over time. The velocity profiles exhibit that the synthetic jet flow prompts the formation of two countervortices during every vibrating cycle of the diaphragm. The experimental results align closely with the predicted outcomes, indicating that the synthetic jet significantly enhances heat transfer by 3.1 times relative to the natural convection in the case of (H/D = 8.4) across different Reynolds numbers while maintaining low power consumption, a compact size, and a noise‐free operation.