This study investigates unsteady velocity Uw=ξx/t\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${U}_{w}=\\xi x/t$$\\end{document} for a Williamson nanofluid film flowing over a moving surface. This work can be used to outline the effects of an applied angled magnetic-field on liquid film flow, which occurs in numerous real-world solicitations such as coating industries for wire or sheet, labs, painting, and several others. Analyzing williamson nanoliquid film flow over a stretching sheet is the main aim of this investigation. The leading Navier–Stokes models are reduced to third-order nonlinear ODE through similarity transformations that are then undertaken using the Hermite wavelet method (HWM). Both 2-dimensional and axisymmetric film flow circumstances have been analyzed. The moving surface parameter ξ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\xi$$\\end{document} is said to have a limited range for which the solution exists. Specifically, ξ≤-1/4\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\xi \\le -1/4$$\\end{document} for axisymmetric flow and ξ≥-1/2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\xi \\ge -1/2$$\\end{document} for two-dimensional flow. Before decreasing to the boundary condition, the velocity climbs until it reaches its maximum. By taking into account the stretching (ξ>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\xi >0$$\\end{document}) and shrinking (ξ<0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\xi <0$$\\end{document}) wall conditions, streamlines are also examined for axisymmetric and 2-dimensional flow patterns.