AbstractThe literature regarding how rill longitudinal profile (concave and convex) affects soil loss and flow resistance is still lacking. The only analysis available in the literature for rills is limited by the fact that measurements were performed for a unique mean slope value sp (18%). In this article, further rill measurements were conducted on a plot with sp = 15% and complex profile shapes and were used to widen the knowledge about the influence of longitudinal profile shape on rill scour, eroded volume, and flow resistance. The findings highlighted that the concave profile has a homogeneous spatial distribution of moderate scours, whereas the scours in the convex one are deeper and more confined, but they are not placed after the slope change as found for sp = 18%. The mean scour depth, which accounts for the discharge and profile shape effects, is not (concave) or is weakly (convex) related to the flow discharge. The concave profile determined a reduction of approximately 57% of the total eroded volume when compared with the convex profile shape, confirming that a concave hillslope limits erosive phenomena. Finally, the flow resistance equation guaranteed a precise estimation of the Darcy–Weisbach friction factor.