The presence of cracks in the microporous layer (MPL) of polymer electrolyte fuel cells (PEFCs), often occurring during the membrane electrode assembly manufacturing process, has a significant impact on cell performance. However, the exact influence of crack presence, density, and patterns within MPLs on cell performance and transport behaviors remains unclear. This study introduces a three-dimensional macroscale model of PEFCs aimed at investigating the effects of MPL cracks and gas diffusion layer (GDL) perforations on cell performance and transport behavior. This model offers several advantages, including the ability to potentially integrate the effects of flow channel design in future. Additionally, the model can seamlessly incorporate electrochemical reactions and explore phenomena within the catalyst layers (CLs), expanding simulation capabilities beyond water transport alone. The findings suggest that MPL cracks contribute positively to performance by facilitating water drainage. Furthermore, when combined with perforations in GDLs, MPL cracks can significantly enhance performance by providing pathways for water transport. Overall, this study provides valuable insights into developing models for optimizing PEFC performance and underscores the need for further research and development in this area.
Read full abstract