After the breach of a landslide dam, the sediment in the breach opening will be carried downstream by the breach flood. The river channel will also be eroded by the flood, resulting in bed load transport. Three large-scale dam breach tests were conducted to investigate the sediment transport behavior after a dam breach. The topography data of the creek channel were measured before and after the dam breach tests to understand the sediment transport behavior. The sediment transport simulations of the dam breach tests were conducted using the iRIC Nays2DH software. The simulations focused on three types of test setups: the single dam, single dam with a spur dike, and double dam models. The terrain (DEM) for the numerical model input was designated based on the LiDAR results, and a flow hydrograph during the dam breach tests was applied. The accuracy of the simulations was assessed using the “coverage index” and “mean absolute percentage error”. A numerical parametrical study was performed to find the major parameters that influenced the simulations. The results showed that the dynamic behavior of water flow and sediment during the dam breach processes were effectively captured by the iRIC Nays2DH simulation, but with limitations. The average flow velocity of the flood in the single dam case was the fastest among the three types of dam breaches. Due to the contraction of the creek channel caused by the spur dike, severe erosion occurred locally, and the flow rate increased in the narrowed section. Water impoundment between the two dams after the first dam breach and the consequent breach of the second dam were also well-simulated for the double dam breach. The findings and simulations in this study help explain dam breaches better and can guide researchers working on sediment transport during dam-breach floods.
Read full abstract