Excess molar volumes VE for 40 mixtures of heptane with a liquid alkane and apparent molar volumes in heptane for eight solid alkanes have been obtained at 298.15 K. They include five linear, 30 branched-chain, and 13 cyclic alkanes. Almost all systems exhibit negative VE values. For mixtures with open chain alkanes, VE increases from C5 to C7 and then decreases. A similar trend is shown by mixtures with cycloalkanes. VE values are compared with known HE data for mixtures with heptane and tetrachloromethane. Signs and trends of VE and HE are correlated with the free volume and interactional terms of the Flory theory. The partial molar volumes at infinite dilution in heptane, V°, have also been obtained and discussed together with literature data on other hydrocarbons and polar compounds. The calculated contributions to V° by CH3, CH2, CH and C groups are compared with previously determined contributions of polar groups. The lower contributions of the latter groups are explained with the volume contraction caused by dipole-induced dipole interaction. The volume effects associated with branching and cyclization have been evaluated and compared with the corresponding effects on solvation enthalpy. The branching effect, in the order of magnitude of few cm3·mol−1, and the larger negative values of cyclization volumes, down to −24 cm3·mol−1, are discussed in terms of packing and solute–solvent interactions, in analogy to polar organic solutes either in heptane and tetrachloromethane. A negative cyclization effect is also exhibited by the solvation enthalpies.