The plants of Prunus mostly bloom in early spring, and the flowers of various species possess their individual floral scent characteristics; Prunus mume, especially, can volatilize a large amount of benzenoid compounds into the air during the flowering phase. In order to elucidate the molecular basis of the differences in the volatile capacity of aromatic substances among Prunus flowers, the endogenous and the headspace volatile components and the expression of ABCG genes were studied among P. mume, P. armeniaca, and P. persica. We detected the floral components in the three species by gas chromatography-mass spectrometry (GC-MS), and we found that benzaldehyde was the key component. Meanwhile, the volatilization efficiency of benzaldehyde in P. mume and P. armeniaca were much higher than that in P. persica. Furthermore, 130, 135, and 133 ABC family members from P. mume, P. armeniaca, and P. persica were identified, respectively. WGCNA analysis demonstrated that candidate ABCG genes were positively correlated with benzaldehyde volatilization efficiency. Moreover, quantitative Real-time PCR indicated that ABCG17 was more likely to be involved in the transmembrane transport of benzaldehyde. This study aimed to provide a theoretical basis for elucidating the transmembrane transport of benzaldehyde and to further the valuable information for fragrant flower breeding in Prunus.