Trees growing at a particular latitude in Eastern North America (ENA) receive more autumn solar irradiation than do trees growing at the same latitude in Europe, a difference that could partly explain the higher percentage of anthocyanin-producing deciduous species in ENA compared with European floras. A proposed link between autumn light intensity and the production of anthocyanins is their function in photoprotection, which enables plants with red leaves to resorb nutrients for a longer time than can yellow or brown leaves. The innately 4-week-shorter foliage period of ENA trees compared with European ones may also play a role, as may stronger nitrogen limitation in poorer soils in ENA. We here test for a correlation between nitrogen access and fall anthocyanin in 126species (55genera, 22 families) from different temperate forests, using a Hierarchical Bayesian model and accounting for phylogenetic structure in the data. None of 81species with nitrogen-fixing symbionts produce autumn anthocyanin, whereas 42% of non-nitrogen-fixers do. Thus, when ample nitrogen is available from symbionts, the benefits of anthocyanin-derived photoprotection apparently do not outweigh the costs of anthocyanin production. If nitrogen limitation indeed plays a role in the dominance of red-autumn-colouring trees in ENA floras - while European floras predominantly produce yellow autumn leaves - there might also be continental differences in the frequency or abundance of nitrogen-fixing trees and shrubs, a new hypothesis that deserves testing.
Read full abstract