Shigellosis, a diarrheal disorder caused by an entero-invasive bacterium Shigella, is a major concern among children often leading to mortality. As most of these strains have developed universal antibiotic resistance, the development of a vaccine is crucial in combating the infection. The O-specific polysaccharide (O-PSs) from S. flexneri type 2a is considered to be the major disease-causing antigen in shigellosis. Therefore, the O-PSs conjugated with carrier proteins, can serve as a potential high molecular weight vaccine candidate. Accordingly, in the present study, O-PS extracted from S. flexneri 2a is conjugated with Cross-Reactive Material (CRM197), a non-toxic mutant of diphtheria toxin. We derivatized CRM197 and O-PS separately with adipic acid dihydrazide (ADH) and reacted with their counterparts to probe the conjugation efficacy. Among the two strategies, the CRM197-ADH treated with O-PS has yielded a stable glycoconjugate of 311 kDa. The conjugation efficiency has been probed by estimating the free protein, free O-PS and O-PS:CRM197 ratio using slot-blot, size exclusion and high-performance anion exchange chromatography techniques. The conjugate exhibited enhanced shelf-life of three months. The cytotoxicity studies with Vero/MRC-5 cells have confirmed the non-toxicity of the conjugate, which makes the glycoconjugate a potential vaccine candidate for shigellosis.