For the flexible riser systems modeled with partial differential equations (PDEs), this article explores the boundary control problem in depth for the first time using a dynamic event-triggered mechanism (DETM). Given the intrinsic time-space coupling characteristic inherent in PDE computations, implementing a state-dependent DETM for PDE-based flexible risers presents a significant challenge. To overcome this difficulty, a novel dynamic event-triggered control method is introduced for flexible riser systems, focusing on optimizing available control inputs. In order to save computational costs from the controller to the actuator, a dynamic event-triggered adaptive boundary controller is designed to effectively reduce boundary position vibrations. Additionally, considering external disturbances, an adaptive bounded compensation term is incorporated to counteract the influence of external disturbances on the system. Addressing boundary position constraints, a new integral barrier Lyapunov function (iBLF) tailored specifically for flexible riser systems is introduced, thereby alleviating conservatism in the controller design of flexible risers modeled by PDEs. At last, the validity of the proposed method is demonstrated through a simulation example.
Read full abstract