Abstract

The riser system is subject to vibration due to marine environmental loads, which can affect the efficiency of the system or even destroy it. This paper proposes a solution for the vibration control problem of a 2-D variable-length flexible riser based on PDE model. Firstly, a disturbance observer is developed to estimate and offset the unknown disturbance in the feedback loop. Based on the above method, an effective boundary controller is designed to realize the elastic suppression goal of the 2-D variable-length flexible riser. Secondly, when considering the asymmetric output constraints, a time adjustment function is introduced to develop a new controller based on the barrier Lyapunov function, which realizes the control objective of suppressing the boundary vibration of the flexible riser within specified constraints in a finite time. Finally, the effectiveness of the controller is verified by simulation examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.