In laparoscopic surgery, many problems are due to the poor degrees of freedom (DOF) of movement in controlling the forceps and laparoscopes. This paper proposes a new flexible laparoscopic forceps manipulator using synchronous belt drive mechanism, which consist of two miniaturized parts, synchronous belt drive mechanism enables independent bending procedure from-90° to 90° at the tip of forceps, and friction wheel mechanism which provides pivoting motion of forceps around incision hole on the abdomen. This mechanism is simple with high rigidity and can easily be miniaturized. The most remarkable characteristics of the prototype described in this paper are: 1) the casing diameter of the forceps is 5 mm; 2) with high rigidity and the repeatability positioning accuracy was 0.5o in bending motion; 3) pure mechanical structure with simple operation and low cost. This manipulator can solve the conflicts and blockings in laparoscopic surgery by switching back and forceps towards, meanwhile, it eliminates the surgical doctor’s fatigue and enhances the precision of surgery with higher effectiveness and safety as well.
Read full abstract