Flexible electromagnetic interference (EMI) shielding films with the merits of light-weight, flexibility, and high EMI shielding performance are the essential materials for the consumer electronics and communication products. Herein, we construct a hybrid conductive network based on the electrospinning thermoplastic polyurethane (TPU) film loaded with different dimensional conductive fillers, including 0D FeCl3, 1D carbon nanotube (CNT) and 2D graphene nanosheet (GN) to achieve a flexible, light-weight, and ultra-efficient EMI shielding composite film. In specific, the electrospinning porous TPU film is firstly anchored by CNTs assisted by ultrasound to generate the porous TPU/CNT film. Thereafter, the as-prepared porous TPU/CNT film is loaded a GN/CNT/FeCl3 layer by vacuum-assisted filtration to generate a double-layer GN/CNT/FeCl3@TPU/CNT film. Finally, another porous TPU/CNT film is sealed onto the GN/CNT/FeCl3@TPU/CNT film by hot-pressing, which fabricates a sandwiched TPU/CNT@GN/CNT/FeCl3@TPU/CNT composite film. It is interesting to note that the composite film possesses the ultrahigh EMI shielding value (56.0 dB at 10.0 GHz) in the X-band (8.2–12.4 GHz) with high flexibility, excellent mechanical properties, long-term durability (acid-base environment resistance and stability after 1000 bends), as well as high thermal conductivity (6.53 W/(m.K)). This work proposes a simple but efficiency strategy to design the flexible EMI shielding film with ultra-high performance and outstanding durability.
Read full abstract