Given the current context of changes in aeronautics to reduce emissions, it is also necessary to modernise the computation methods to anticipate future cases where disciplines which are now calculated separately (i.e. manoeuvers and gusts) should be computed at the same time including flexible effects and using a time-domain approach. In this work, a static aeroelasticity formulation is adapted to compute wind gust loads. This static method uses aerodynamic matrices to calculate an effective angle of attack (used to recover the local pressure coefficients) from a structural deformation. The approach has been to define this deformation including unsteady effects influence in order to use the same formulation as the static case. Three gust cases (two unsteady and one quasi-steady) have been tested in a rectangular wing, and the proposed method has been compared to the aeroelastic high-fidelity solution and to an uncorrected version of the Doublet Lattice Method (Nastran Solution 146). The proposed solution benefits from the use of the lookup tables to accurately estimate the peak lift coefficient value (maximum error of 6.7%) at least 2.5 times faster than the Doublet Lattice Method. Nevertheless, using a limited model with only two degrees of freedom prevents the proposed method from capturing complex dynamics coming from highly unsteady gust excitation or from aerodynamic instabilities.