Abstract

The paper presents the design of parameter varying input and output transformations for Linear Parameter Varying systems, which make possible the control of a selected subsystem. In order to achieve the desired decoupling the inputs and outputs of the plant are blended together, and so the MIMO control problem is reduced to a SISO one. The new input of the blended system will only interact with the selected subsystem, while the response of the undesired dynamical part is suppressed in the single output. Decoupling is achieved over the whole parameter range, and no further dynamics are introduced. Linear Matrix Inequality methods form the basis of the proposed approach, where the minimum sensitivity is maximized for the subsystem to be controlled, while the H∞ norm of the subsystem to be decoupled is minimized. The method is evaluated on a flexible wing aircraft model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.