This work aimed to explore safe techniques for the utilization of farmland surrounding mining areas contaminated with heavy metals—specifically cadmium (Cd) and lead (Pb)—in order to achieve food security in agricultural production. A potato variety (Qingshu 9) with high Cd and Pb accumulation was used as the test crop, and seven treatments were set up: control (CK), special potato fertilizer (T1), humic acid (T2), special potato fertilizer + humic acid (T3), biochar (T4), calcium magnesium phosphate fertilizer (T5), and biochar + calcium magnesium phosphate fertilizer (T6). The remediation effect of the combined application of different passivators on the accumulation of cadmium and lead in potatoes in the contaminated soil of a mining area was studied. The results showed that, compared with CK, all passivator treatments improved the physical and chemical properties of the soil and reduced the available Cd and Pb content in the soil and in different parts of potatoes. The T6 treatment yielded the most significant reduction in the available Cd and Pb content in the soil, the Cd and Pb content in the potato pulp, and the enrichment factor (BCF) and transfer factor (TF) of the potatoes. Compared with T4 and T5, the content of available Cd in the soil decreased by 1.22% and 4.71%, respectively; the soil available Pb content decreased by 3.13% and 3.02%, respectively; the Cd content in the potato pulp decreased by 68.08% and 31.02%, respectively; and the Pb content decreased by 31.03% and 20.00%, respectively. The results showed that the application of biochar combined with calcium magnesium phosphate fertilizer had a better effect in terms of reducing the available Cd and Pb content in the soil and the Cd and Pb content in the potato flesh compared to their individual application. Biochar and calcium magnesium phosphate fertilizer can synergistically increase the content of soil available nutrients and reduce the activity of heavy metals in the soil to prevent the transfer and accumulation of cadmium and lead to potatoes, as well as improve their yield and quality. The results of this study provide technical support for safe potato planting and agricultural soil management.
Read full abstract