The Flemish Environment and Health Study (FLEHS) collects information on internal exposure to a broad range of environmental chemicals in the general population in Flanders, the Northern region of Belgium. The aim is to establish biomonitoring exposure distributions for the general population in support of public health and environmental policy, environmental risk assessment and risk management decisions. In 2017-2018, urine and blood samples were collected from 428 teenagers by a stratified clustered two stage randomized design. Samples were analyzed for a broad range of biomarkers related to exposure to chlorinated and newer pesticides, brominated and organophosphate flame retardants (BFR/OPFR), polychlorinated biphenyls (PCBs), bisphenols, phthalates and alternative plasticizers, per-and polyfluoroalkyl substances (PFAS), polycyclic aromatic hydrocarbons (PAHs), benzene, metals and trace elements. The geometric mean levels and percentiles of the distribution were estimated for each biomarker, for the whole study population and following stratification for sex, the household educational attainment and the residence area's urbanicity. Geometric means of biomarkers of lead, dichlorodiphenyltrichloroethane (DDT), PCBs, PAHs, regulated phthalates and bisphenol A (BPA) were lower than in the previous FLEHS cycles. Most biomarker levels were below health-based guidance values (HB-GVs). However, HB-GVs of urinary arsenic, blood lead, blood cadmium, sum of serum perfluorooctane sulfonate (PFOS) and perfluoro-1-hexanesulfonate (PFHxS) and the urinary pyrethroid metabolite (3-PBA) were exceeded in respectively 25%, 12%, 39.5%, 10% and 22% of the teenagers. These results suggest that the levels of exposure in the Flemish population to some environmental chemicals might be of concern. At the same time, we noticed that biomarkers for BPA substitutes, metabolites of OPFRs, an expanded list of PFAS, glyphosate and its metabolite could be measured in substantial proportions of participants. Interpretation of these levels in a health-risk context remains uncertain as HB-GVs are lacking. Household educational attainment and residential urbanicity were significant exposure determinants for many biomarkers and could influence specific biomarker levels up to 70% as shown by multiple regression analysis. The research consortium also took care of the broader external communication of results with participants, policy makers, professional groups and civil society organizations. Our study demonstrated that teenagers are exposed to a wide range of chemicals, it demonstrates the success of public policies to reduce exposure but also points to concern and further priorities and needs for follow up.
Read full abstract