Following a recent work on the effective description of the equations of state for hot QCD obtained from a Hard thermal loop expression for the gluon self-energy, in terms of the quasi-gluons and quasi- quark/anti-quarks with respective effective fugacities, the dissociation process of heavy quarkonium in hot QCD medium has been investigated. This has been done by investigating the medium modification to a heavy quark potential. The medium modified potential has a quite different form (a long range Coulomb tail in addition to the usual Yukawa term) in contrast to the usual picture of Debye screening. The flavor dependence of the binding energies of the heavy quarkonia states and the dissociation temperature have been obtained by employing the debye mass for pure gluonic and full QCD case computed employing the quasi-particle picture. Thus estimated dissociation patterns of the charmonium and bottomonium states, considering Debye mass from different approaches in pure gluonic case and full QCD, have shown good agreement with the other potential model studies.
Read full abstract