Air-side heat transfer and flow friction characteristics of four different fin patterns suitable for flat tube bank fin heat exchangers are investigated experimentally. The fin patterns are the fin with six dimples, the fin with nine dimples, the double louvered fin, and the fin with delta-winglet vortex generators (VGs). The corresponding plain fins (plain fin I and plain fin II) are used as the references for evaluating the thermal performances of these fin patterns under identical pump power constraint. The performance of the fin with the six dimples is better than that with nine dimples. The performance of the fin with delta-winglet VGs is better than that of the double louvered fin, and the performance of the latter is better than that of the fins with six or nine dimples. In the tested Reynolds number range, the heat transfer enhancement performance factor of the fin with six dimples, the fin with nine dimples, the double louvered fin, and the fin with delta-winglet VGs is 1.2–1.3, 1.1–1.2, 1.3–1.6, and 1.4–1.6, respectively. The correlations of Nusselt number and friction factor with Reynolds number for the fins with six/nine dimples and the double louvered fin are obtained. These correlations are useful to design flat tube bank fin heat exchangers.