Abstract
The naphthalene sublimation method was used to study the effects of span position of vortex generators (VGs) on local heat transfer on three-row flat tube bank fin. A dimensionless factor of the larger the better characteristics, JF, is used to screen the optimum span position of VGs. In order to get JF, the local heat transfer coefficient obtained in experiments and numerical method are used to obtain the heat transferred from the fin. A new parameter, named as staggered ratio, is introduced to consider the interactions of vortices generated by partial or full periodically staggered arrangement of VGs. The present results reveal that: VGs should be mounted as near as possible to the tube wall; the vortices generated by the upstream VGs converge at wake region of flat tube; the interactions of vortices with counter rotating direction do not effect Nusselt number (Nu) greatly on fin surface mounted with VGs, but reduce Nu greatly on the other fin surface; the real staggered ratio should include the effect of flow convergence; with increasing real staggered ratio, these interactions are intensified, and heat transfer performance decreases; for average Nu and friction factor (f), the effects of interactions of vortices are not significant, f has slightly smaller value when real staggered ratio is about 0.6 than that when VGs are in no staggered arrangement.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have