The Cocos Ridge, which is subducted beneath the Central American Volcanic Arc, has a complex tectonic evolution history due to plume-ridge interaction between the Galápagos plume and the Cocos—Nazca spreading center. This study presents major and trace element analyses of plagioclase and clinopyroxenes hosted by Cocos Ridge basaltic rocks that were drilled in three holes (U1381A, U1381C and U1414A) of Sites U1381 and U1414 on the Cocos Ridge close to the Middle America Trench during the Integrated Ocean Drilling Program (IODP) Expeditions 334 and 344. The results show that (1) plagioclases are mainly bytownite and labradorite with subordinate andesine, which are enriched in light rare earth elements (LREE) and some large-ion lithophile elements (LILE) and exhibit marked positive Eu anomalies; and (2) that clinopyroxenes are augites, which are depleted in highly incompatible elements such as LREE and LILE, have nearly flat heavy rare earth elements patterns (HREE) and lack Eu anomalies in chondrite-normalized rare earth element (REE) diagrams. During the ascent to the surface, the primary magmas experienced fractional crystallization of plagioclase, clinopyroxene, Ti-Fe oxides and possibly olivine (complete replacement of olivine by secondary minerals). The crystallization temperatures of plagioclase phenocrysts and microlites are 1050 to 1269 °C, and 866 to 1038 °C, respectively, and the pressures of plagioclase phenocrysts are 0.3–0.7 GPa. The crystallization temperatures of clinopyroxene phenocrysts/micro-phenocrysts is 1174–1268 °C, similar to those of plagioclase phenocrysts, suggesting some of clinopyroxene and plagioclase phenocrysts cotectic crystallized during early stage of magmatic evolution. In addition, the equilibrium pressures of clinopyroxene phenocrysts/micro phenocrysts are 0.02–0.97 GPa, implying that the clinopyroxene started to crystallize within the mantle, and magma evolution has undergone an early crystallization stage with clinopyroxene and no plagioclase.