This paper presents a method for modelling the permeability of fluid at the interface formed between flat parallel plates and the sharp-edged ridges of a metal gasket. This work was divided into three stages. In the first stage, numerical calculations simulating the deformation (compression of the gasket) were performed. The calculations were carried out using thermomechanical static analysis with commercial software. The purpose of these calculations was to determine the contact area of the gasket ridges with the plates, the deformation of the gasket ridges, and the reaction force resulting from the degree of compression of the gasket. In the second part of this work, analytical calculations were performed to estimate the tightness level. The analytical model proposed in this paper was based on Darcy's equation, simulating fluid flow through a ring-shaped porous layer. The analytical model also took into account the shape of the roughness profile of the sealed surfaces. A mathematical Ausloos-Berman function based on fractal theory was used to represent it. In the last part of this work, experimental tests were carried out to determine the actual fluid permeability and thus verify the numerical and analytical calculations.
Read full abstract