Cone-beam computed tomography (CBCT) systems acquire volumetric data more efficiently than fan-beam or multislice CT, particularly when the anatomy of interest resides within the axial field-of-view of the detector and data can be acquired in one rotation. For such systems, scattered radiation remains a source of image quality degradation leading to increased noise, image artifacts, and CT number inaccuracies. Recent advances in metal additive manufacturing allow the production of highly focused antiscatter grids (2D-ASGs) that can be used to reduce scatter intensity, while preserving primary radiation transmission. We present the first implementation of a large-area, 2D-ASG for flat-panel CBCT, including grid-line artifact removal and related improvements in image quality. A 245 × 194 × 10 mm 2D-ASG was manufactured from chrome-cobalt alloy using laser powder-bed fusion (LPBF) (AM-400; Renishaw plc, New Mills Wotton-under-Edge, UK). The 2D-ASG had a square profile with a pitch of 9.09 lines/cm and 10:1 grid-ratio. The nominal 0.1mm grid septa were focused to a 732 mm x-ray source to optimize primary x-ray transmission and reduce grid-line shadowing at the detector. Powder-bed fusion ensured the structural stability of the ASG with no need for additional interseptal support. The 2D-ASG was coupled to a 0.139-mm element pitch flat-panel detector (DRX 3543, Carestream Health) and proper alignment was confirmed by consistent grid-line shadow thickness across the whole detector array. A 154-mm diameter CBCT image-quality-assurance phantom was imaged using a rotary stage and a ceiling-mounted, x-ray unit (Proteus XR/a, GE Medical Systems, 80kVp, 0.5mAs). Grid-line artifacts were removed using a combination of exposure-dependent gain correction and spatial-frequency, Fourier filtering. Projections were reconstructed using a Parker-weighted, FDK algorithm and voxels were spatially averaged to 357 × 357 × 595 µm to improve the signal-to-noise characteristics of the CBCT reconstruction. Finally, in order to compare image quality with and without scatter, the phantom was scanned again under the same CBCT conditions but with no 2D-ASG. No additional antiscatter (i.e., air-gap, bowtie filtration) strategies were used to evaluate the effects in image quality caused by the 2D-ASG alone. The large-area, 2D-ASG prototype was successfully designed and manufactured using LPBF. CBCT image-quality improvements using the 2D-ASG included: an overall 14.5% CNR increase across the volume; up to 48.8% CNR increase for low-contrast inserts inside the contrast plate of the QA phantom; and a 65% reduction of cupping artifact in axial profiles of water-filled cross sections of the phantom. Advanced image processing strategies to remove grid line artifacts did not affect the spatial resolution or geometric accuracy of the system. LPBF can be used to manufacture highly efficient, 2D-focused ASGs that can be easily coupled to clinical, flat-panel detectors. The implementation of ASGs in CBCT leads to reduced scatter-related artifacts, improved CT number accuracy, and enhanced CNR with no increased equivalent dose to the patient. Further improvements to image quality might be achieved with a combination of scatter-correction algorithms and iterative-reconstruction strategies. Finally, clinical applications where other scatter removal strategies are unfeasible might now achieve superior soft-tissue visualization and quantitative capabilities.
Read full abstract