In this paper, we study the Minkowski-type inequality for asymptotically flat static manifolds ( M n , g ) (M^{n},g) with boundary and with dimension n > 8 n>8 that was established by McCormick [Proc. Amer. Math. Soc. 146 (2018), pp. 4039–4046]. First, we show that any asymptotically flat static ( M n , g ) (M^{n},g) which achieves the equality and has CMC or equipotential boundary is isometric to a rotationally symmetric region of the Schwarzschild manifold. Then, we apply conformal techniques to derive a new Minkowski-type inequality for the level sets of bounded static potentials. Taken together, these provide a robust approach to detecting rotational symmetry of asymptotically flat static systems. As an application, we prove global uniqueness of static metric extensions for the Bartnik data induced by both Schwarzschild coordinate spheres and Euclidean coordinate spheres in dimension n > 8 n > 8 under the natural condition of Schwarzschild stability. This generalizes an earlier result of Miao [Classical Quantum Gravity 22 (2005), pp. L53–L59]. We also establish uniqueness for equipotential photon surfaces with small Einstein-Hilbert energy. This is interesting to compare with other recent uniqueness results for static photon surfaces and black holes, e.g. see V. Agostiniani and L. Mazzieri [Comm. Math. Phys. 355 (2017), pp. 261–301], C. Cederbaum and G. J. Galloway [J. Math. Phys. 62 (2021), p. 22], and S. Raulot [Classical Quantum Gravity 38 (2021), p. 22].
Read full abstract