Flat detector CT perfusion (FD-CTP) is a novel technique using C-arm angiography systems for interventional dynamic tissue perfusion measurement with high potential benefits for catheter-guided treatment of stroke. However, FD-CTP is challenging since C-arms rotate slower than conventional CT systems. Furthermore, noise and artefacts affect the measurement of contrast agent flow in tissue. Recent robotic C-arms are able to use high speed protocols (HSP), which allow sampling of the contrast agent flow with improved temporal resolution. However, low angular sampling of projection images leads to streak artefacts, which are translated to the perfusion maps. We recently introduced the FDK-JBF denoising technique based on Feldkamp (FDK) reconstruction followed by joint bilateral filtering (JBF). As this edge-preserving noise reduction preserves streak artefacts, an empirical streak reduction (SR) technique is presented in this work. The SR method exploits spatial and temporal information in the form of total variation and time-curve analysis to detect and remove streaks. The novel approach is evaluated in a numerical brain phantom and a patient study. An improved noise and artefact reduction compared to existing post-processing methods and faster computation speed compared to an algebraic reconstruction method are achieved.