Historical seismic events have repeatedly highlighted the susceptibility of above-ground liquid storage steel tanks, underscoring the critical need for their proper design to minimize potential damage due to seismic forces. A significant failure mechanism in these structures, which play essential roles in the extraction and distribution of various raw or refined materials—many of which are flammable or environmentally hazardous—is the dynamic buckling of the tank walls. This study introduces a numerical framework designed to assess the earthquake-induced hydrodynamic pressures exerted on the walls of cylindrical steel tanks. These pressures result from the inertial forces generated during seismic activity. The computational framework incorporates material and geometric nonlinearities and models the tanks using four-node shell elements with two-point integration, specifically Belytschko shell elements. The Arbitrary Lagrangian–Eulerian (ALE) method is employed to accommodate substantial structural and fluid deformations, enabling a full simulation of fluid–structure interaction through highly nonlinear algorithms. Experimental test data are utilized to validate the proposed modeling approach, particularly in replicating sloshing phenomena and identifying stress concentrations that may lead to wall buckling. The study further presents results from a parametric analysis that varies the height-to-radius and radius-to-thickness ratios of a typical anchored flat-bottomed tank, examining the seismic performance of this common storage system. These results provide insights into the relationship between tank properties and mechanical behavior under dynamic loading conditions.