In this Letter, we illustrate how polarized neutron scattering can be used to isolate the spin-spin correlations of modes forming flat bands in a frustrated magnetic system hosting a classical spin liquid phase. In particular, we explain why the nearest-neighbor spin ice model, whose interaction matrix has two flat bands, produces a dispersionless (i.e., "flat") response in the non-spin-flip (NSF) polarized neutron scattering channel and demonstrate that NSF scattering is a highly sensitive probe of correlations induced by weak perturbations that lift the flat band degeneracy. We use this to explain the experimentally measured dispersive (i.e., nonflat) NSF channel of the dipolar spin ice compound Ho_{2}Ti_{2}O_{7}.