Bone tissue engineering aims to develop biomaterials that are capable of effectively repairing and regenerating damaged bone tissue. Among the various polymers used in this field, polycaprolactone (PCL) is one of the most widely utilized. As a biocompatible polymer, PCL is easy to fabricate, cost-effective, and offers consistent quality control, making it a popular choice for biomedical applications. However, PCL lacks inherent antibacterial properties, making it susceptible to bacterial adhesion and biofilm formation, which can lead to implant failure. To address this issue, this study aims to enhance the antibacterial properties of PCL by incorporating calcium phosphate composite (PCL_CaP) nanostructures onto its surface via hydrothermal synthesis. The resulting “PCL_CaP” nanostructured surfaces exhibited improved wettability and demonstrated mechano-bactericidal potential against Escherichia coli and Bacillus subtilis. The flake-like morphology of the fabricated CaP nanostructures effectively disrupted bacteria membranes, inhibiting bacterial growth. Furthermore, the “PCL_CaP” surfaces supported the adhesion, proliferation, and differentiation of pre-osteoblasts, indicating their potential for bone tissue engineering applications. This study demonstrates the promise of calcium phosphate composite nanostructures as an effective antibacterial coating for implants and medical devices, with further research required to evaluate their long-term stability and in vivo performance.
Read full abstract