We use video footage of a water-tunnel experiment to construct a 2-D reduced-order model of the flapping dynamics of an inverted flag in uniform flow. The model is obtained as the reduced dynamics on a 2-D attracting spectral submanifold (SSM) that emanates from the two slowest modes of the unstable fixed point of the flag. Beyond an unstable fixed point and a limit cycle expected from observations, our SSM-reduced model also confirms the existence of two unstable fixed points for the flag, which were found by previous studies. Importantly, the model correctly reconstructs the dynamics from a small number of general trajectories and no further information on the system. In the chaotic flapping regime, we construct a 4-D SSM-reduced model that captures the system's chaotic attractor.
Read full abstract