This paper considers a multi-objective fixed-charge transportation problem (MOFCTP) in which the parameters of the objective functions are random rough variables, while the supply and the demand parameters are rough variables. In real-life situations, the parameters of a multi-objective fixed-charge transportation problem may not be defined precisely, because of globalization of the market, uncontrollable factors, etc. As such, the multi-objective fixed-charge transportation problem is proposed under rough and random rough environments. To tackle uncertain (rough and random rough) parameters, the proposed model employs an expected value operator. Furthermore, a procedure is developed for converting the uncertain multi-objective fixed-charge transportation problem into a deterministic form and then solving the deterministic model. Three different methods, namely, the fuzzy programming, global criterion, and ϵ-constrained methods, are used to derive the optimal compromise solutions of the suggested model. To provide the preferable optimal solution of the formulated problem, a comparison is drawn among the optimal solutions that are extracted from different methods. Herein, the ϵ-constrained method derives a set of optimal solutions and generates an exact Paretofront. Finally, in order to show the applicability and feasibility of the proposed model, the paper includes a real-life example of a multi-objective fixed-charge transportation problem. The main contribution of the paper is that it deals with MOFCTP using two types of uncertainties, thus making the decision making process more flexible.