A keyboard design, once adopted, tends to have a longlasting and worldwide impact on daily user experience. There is a substantial body of research on touch-screen stylus keyboard optimization. Most of it has focused on English only. Applying rigorous mathematical optimization methods and addressing diacritic character design issues, this article expands this body of work to French, Spanish, German, and Chinese. More important and counter to the intuition that optimization by nature is necessarily specific to each language, this article demonstrates that it is possible to find common layouts that are highly optimized across multiple languages for stylus (or single finger) typing. We first obtained a layout that is highly optimized for both English and French input. We then obtained a layout that is optimized for English, French, Spanish, German, and Chinese pinyin simultaneously, reducing its stylus travel distance to about half of QWERTY's for all of the five languages. In comparison to QWERTY's 3.31, 3.51, 3.7, 3.26, and 3.85 keys of movement for English, French, Spanish, German, and Chinese, respectively, the optimized multilingual layout has an average travel distance of 1.88, 1.86, 1.91, 1.77, and 1.68 keys, correspondingly. Applying Fitts's law with parameters validated by a word tapping experiment, we show that these multilingual keyboards also significantly reduce text input time for multiple languages over the standard QWERTY for experienced users. In comparison to layouts individually optimized for each language, which are also obtained in this article, simultaneously optimizing for multiple languages caused only a minor performance degradation for each language. This surprising result could help to reduce the burden of multilingual users having to switch and learn new layouts for different languages. In addition, we also present and analyze multiple ways of incorporating diacritic characters on multilingual keyboards. Taken together, the present work provides a quantitative foundation for the understanding and designing of multilingual touch-screen keyboards.
Read full abstract