Ocean Bottom Node (OBN) is a seismic data acquisition technique, comprising a hydrophone and a three-component geophone. In practice, the vertical component is susceptible to high-amplitude, low-velocity, and low-frequency shear wave noise, which negatively impacts the subsequent processing of dual-sensor data. The most commonly used method is adaptive matching subtraction, which estimates shear wave noise in the vertical component by solving an optimization problem. Neural networks, as robust nonlinear fitting tools, offer superior performance in resolving nonlinear mapping relationship and exhibit computational efficiency. In this paper, we introduce a self-supervised shear wave suppression approach for 3D OBN seismic data, using a neural network in place of the traditional adaptive matching subtraction operator. This method adopts the horizontal components as the input to the neural network, and measures the output and the noisy vertical component to establish a loss function for the network training. The network output is the predicted shear wave noise. To better balance signal leakage and noise suppression, the method incorporates a local normalized cross-correlation regularization term in the loss function. As a self-supervised method, it does not need clean data to serve as labels, thereby negating the tedious work of obtaining clean field data. Extensive experiments on both synthetic and field data demonstrate the effectiveness of the proposed method on shear wave noise suppression for 3D OBN seismic data.
Read full abstract