O-specific polysaccharides, obtained on mild acid degradation of lipopolysacchrides of the serologically related strains Pseudomonas aeruginosa O3 (Lányi classification), O25 (Wokatsch classification) and immunotypes 3 and 7 (Fisher classification), are built up of trisaccharide repeating units involving 2-acetamido-2,6-dideoxy-D-galactose (N-acetyl-D-fucosamine), 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid or 2,3-diacetamido-2,3-dideoxy-L-guluronic acid and 3-acetamidino-2-acetamido-2,3-dideoxy-D-mannuronic acid or 3-acetamidino-2-acetamido-2,3-dideoxy-L-guluronic acid. Lányi O3(a),3d,3f and Wokatsch O25 polysaccharides contain also O-acetyl groups. On the basis of solvolysis with anhydrous hydrogen fluoride, resulting in trisaccharide fragments with N-acetylfucosamine residue at the reducing terminus, chemical modifications of the acetamidino group (alkaline hydrolysis to the acetamido group or reductive deamination to the ethylamino group), as well as analysis by 1H-NMR (including nuclear Overhauser effect experiments) and 13C-NMR spectroscopy, and fast-atom bombardment mass spectrometry, it was concluded that the repeating units of the polysaccharides have the following structures: (Formula: see text) where HexNAcAmA = alpha-L-GulNAcAmA (approximately 70%) or beta-D-ManNacAMA (approximately 30%). Lányi O3(a),3d,3f polysaccharide involves two types of repeating units, which differ from each other only in the configuration at C-5 of the 3-acetamidino-2-acetamido-2,3-dideoxyuronic acid residue. Lányi O3(a),3c,O3a,3d,3e and Fisher immunotypes 3 and 7 polysaccharides contain, together with the major repeating units shown above, a small proportion of units in which the derivative of alpha-L-guluronic acid is replaced by the corresponding beta-D-manno isomer. The data obtained provide the opportunity to substantiate the serological interrelations between these strains of P. aeruginosa by the presence in the O-specific polysaccharides of common monosaccharides or disaccharide fragments. The distinctions between them stem from the presence or absence of the O-acetyl group, a different configuration of the glycosidic linkage of the N-acetylfucosamine residue and/or a different configuration at C-5 of one or both derivatives of diaminouronic acids.