Accelerated propagation is a new phenomenon associated with nonlocal diffusion problems. In this paper, we determine the exact rate of accelerated propagation in the Fisher-KPP equation with nonlocal diffusion and free boundaries, where the nonlocal diffusion operator is given by ∫RJ(x-y)u(t,y)dy-u(t,x)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\displaystyle \\int _{\\mathbb {R}}J(x-y)u(t,y)dy-u(t,x)$$\\end{document}, and the kernel function J(x) behaves like a power function near infinity, namely lim|x|→∞J(x)|x|α=λ>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\lim _{|x|\\rightarrow \\infty } J(x)|x|^{\\alpha }=\\lambda >0$$\\end{document} for some α∈(1,2]\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha \\in (1,2]$$\\end{document}. This is the precise range of α\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\alpha $$\\end{document} where accelerated spreading can happen for such kernels. By constructing subtle upper and lower solutions, we prove that the location of the free boundaries x=h(t)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$x=h(t)$$\\end{document} and x=g(t)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$x=g(t)$$\\end{document} goes to infinity at exactly the following rates: limt→∞h(t)tlnt=limt→∞-g(t)tlnt=μλ,whenα=2,limt→∞h(t)t1/(α-1)=limt→∞-g(t)t1/(α-1)=22-α2-αμλ,whenα∈(1,2).\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} \\displaystyle \\lim _{t\\rightarrow \\infty }\\frac{h(t)}{t\\ln t}=\\lim _{t\\rightarrow \\infty }\\frac{-g (t)}{t\\ln t}=\\mu \\lambda ,&{} \\hbox { when } \\alpha =2,\\\\ \\displaystyle \\lim _{t\\rightarrow \\infty }\\frac{h(t)}{ t^{1/(\\alpha -1)}}= \\lim _{t\\rightarrow \\infty }\\frac{-g (t)}{ t^{1/(\\alpha -1)}}=\\frac{2^{2-\\alpha }}{2-\\alpha }\\mu \\lambda , &{} \\hbox { when } \\alpha \\in (1,2). \\end{array}\\right. } \\end{aligned}$$\\end{document}Here μ>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mu >0$$\\end{document} is a given parameter in the free boundary condition. Accelerated propagation can also happen when lim|x|→∞J(x)|x|(ln|x|)β=λ>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\lim _{|x|\\rightarrow \\infty }J(x)|x|(\\ln |x|)^\\beta =\\lambda >0$$\\end{document} for some β>1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\beta >1$$\\end{document}. For this case, we prove that -g(t),h(t)=exp{[(2βμλβ-1)1/β+o(1)]t1/β}ast→∞.\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} -g (t), h(t)=\\exp \\Big \\{\\Big [\\Big (\\frac{2\\beta \\mu \\lambda }{\\beta -1}\\Big )^{1/\\beta }+o(1)\\Big ]t^{1/\\beta }\\Big \\} \\hbox { as } t\\rightarrow \\infty . \\end{aligned}$$\\end{document}These results considerably sharpen the corresponding ones in [20], and the techniques developed here open the door for obtaining similar precise results for other problems. A crucial technical point is that such precise conclusions on the propagation are achievable by finding the correct improvements on the form of the lower solutions used in [20], even though the precise long-time profile of the density function u(t, x) is still lacking.